Comparing the effect of mutations in two different versions of the *eve* stripe 2 enhancer

Francheska López Rivera
Group meeting
February 25, 2015

Goals for this meeting

- Introduction and previous results
- Results after merging data from different stains
- Discussion about how to communicate the story

Enhancers control gene expression in animals.

We use the *Drosophila melanogaster* embryo as our system.

The position of *eve* stripe 2 is determined by four transcription factors.

The position of *eve* stripe 2 is determined by four transcription factors.

Reporter constructs have been used to study the *eve* stripe 2 enahncer.

Minimal reporter constructs have been used to study the *eve* stripe 2 enhancer.

Minimal reporter constructs have been used to study the *eve* stripe 2 enhancer.

What is the role of sequences flanking the *eve* stripe 2 enhancer?

What is the role of sequences flanking the *eve* stripe 2 enhancer?

We mutated *eve* stripe 2 minimal and full enhancers.

Mutations on important *eve* stripe 2 enhancer binding sites affected *eve* stripe 2 expression.

We expect flanking sequences to compensate for mutations if they contain binding sites.

Data will be presented as line traces.

Data will be presented as line traces.

Data will be presented as line traces.

Minimal enhancer levels are consistent with previous observations.

Flanking sequences compensate for mutations even in the absence of footprinted binding sites.

We want to identify the sequence features responsible for compensation.

We designed constructs to test for distance from the promoter.

a) Distance from promoter

We designed constructs to test for additional hb or gt binding sites.

b) Additional binding sites

	А	В	С	D	
1		p1	p2	р3	
2	Stain 1	0.21	0.11	0.41	
3	Stain 2	0.25	0.1	0.45	
4	Stain 3	0.15	0.05	0.5	
5					

	А	В	С	D	
1		p1	p2	р3	
2	Stain 1	0.21	0.11	0.41	
3	Stain 2	0.25	0.1	0.45	
4	Stain 3	0.15	0.05	0.5	
5					

	Α	В	С	D	
1		p1	p2	р3	
2	Stain 1	0.21	0.11	0.41	
3	Stain 2	0.25	0.1	0.45	
4	Stain 3	0.15	0.05	0.5	
5					

Ratio:
$$\frac{p2}{p1}$$

Data discussion

Thank you!

